The Neper/FEPX Project and its Application to 4D Experiment/Simulation Studies

https://neper.info, https://fepx.info

Romain Quey¹ and Matthew Kasemer²

42nd Risø International Symposium on Materials Science, Roskilde, Denmark, 5–9 September 2022

¹ CNRS, MINES Saint-Étienne, France ² University of Alabama, USA

The Neper/FEPX Project

Application to a 4D Experiment/Simulation Study

The Neper/FEPX Project

Application to a 4D Experiment/Simulation Study

Neper/FEPX: Context and History

Context: Simulation of the (Large) Plastic Deformation of Polycrystals

First release Neper v1.8 Voronoi tessellations meshing, regularization 2003–2005—2009

(Barbe, Quey, Musienko and Cailletaud, MRC, 2008)

FEPX

- - - · 1995–1998 Parallel implementation Sheet forming applications

2009 Application to finely meshed polycrystals

(Wong and Dawson, 2009)

Neper/FEPX: Context and History

Context: Simulation of the (Large) Plastic Deformation of Polycrystals

Context: Simulation of the (Large) Plastic Deformation of Polycrystals

Context: Simulation of the (Large) Plastic Deformation of Polycrystals

Context: Simulation of the (Large) Plastic Deformation of Polycrystals

Established codes, products of 40 collective years or development and use, 400–500 papers

Neper/FEPX: Overview

Lab-scale Free / Open-Source Software

https://neper.info

# FEPX 1.3.0	🛪 » FEPX: Finite Element Polycrystal Plasticity	View page source
h docs	FEPX: Finite Element Polycrystal P	asticity
umentation		
ranca Panars	Date of the second s	and an and the second second
cations		
	FEPX is a finite element software package for polycrystal plasticity, and local mechanical behaviors of large polycrystalline aggregates v a scalable parallel framework.	It can model both the global vith complex microstructures via
	Note	
	See also FEPX's companion program, Neper, a polycrystal generat acts as the primary pre- and post-processor for FEPX.	ion and meshing tool. Neper
	FEPX is currently maintained and developed by the Advanced Comp Laboratory ACME Lab at The University of Alabama.	outational Materials Engineering
		Next O

https://fepx.info

- Code distributed on the websites / GitHub
- Proper workflow (code versioning, testing, issue tracker, ...)

• Expanding array of resources

Active discussion forum and responsive user support

Neper/FEPX Now: Full Range of Features for Polycrystal Plasticity Studies

Neper -T: Tessellation Generation

- Single-scale tessellations
- Multi-scale tessellations
- Crystal orientation distributions (random or uniform)

Neper -M: Meshing

- Meshing
- Remeshing

FEPX: Crystal-plasticity FE simulations

Neper -S: Simulation / Post-Processing

- Simulation archiving
- Post-processing

Neper -V: Visualization

- · Tessellation and mesh visualization
- Results visualization
- Pole figures
- Orientation space

Generation of Single-Scale Polycrystals: Principle (Neper -T)

Optimization of Laguerre tessellation

 $(\mathbf{x_i}, w_i), w_i \ge 0, i = 1, ..., N$

Microstructure

Typical Polycrystal

Optimization algorithm -----

Tessellation algorithm ----

Typical Types of Microstructure Properties / Input

- Objective function: application dependent (grain size distributions, grain centroids, ...)
- Non-linear, local, gradient-free, large-scale optimization problem (NLopt)

Any microstructure can be generated as long as (i) it can be represented using convex cells and (ii) an objective function can be defined

Generation of Single-Scale Polycrystals: Applications (Neper -T)

Polycrystals of Various Properties

Grain size distributions in 2-phase or "textured" MoS₂ sheets (Sledzinska et al, 2017)

White grains: high conductivity; gray grains: low conductivity; different grain boundary types: different conductances 6D-DCT Polycrystal

Generation of Multiscale Polycrystals: Principle (Neper -T)

Typical Microstructures (pearlitic / bainitic steels, lamellar Ti64, multilayer materials, ...)

Ti64 (Wielewski et al., 2015)

Carbide-free bainitic steel (Hell, 2011)

Characterized by grain subdivisions \rightarrow "non-normal" tessellations

Principle: replicating material's processing (example of bainitic steel)

- Scale 1: grain-growth statistics, random orientations
- Scale 2, in each cell:
 - Morphology: seeds on GBs + Voronoi tessellation
 - Orientations: KS, NW relationships, ...
- Scale 3, in each cell: lamellae

Before Meshing: Flattening

Flattening of a 2-scale tessellation

Generation of Multiscale Polycrystals: Principle (Neper -T)

Typical Microstructures (pearlitic / bainitic steels, lamellar Ti64, multilayer materials, ...)

Ti64 (Wielewski et al., 2015)

Carbide-free bainitic steel (Hell, 2011)

Characterized by grain subdivisions \rightarrow "non-normal" tessellations

Principle: replicating material's processing (example of bainitic steel)

- Scale 1: grain-growth statistics, random orientations
- Scale 2, in each cell:
 - Morphology: seeds on GBs + Voronoi tessellation
 - Orientations: KS, NW relationships, ...
- Scale 3, in each cell: lamellae

Before Meshing: Flattening

Generation of Multiscale Polycrystals: Principle (Neper -T)

Typical Microstructures (pearlitic / bainitic steels, lamellar Ti64, multilayer materials, ...)

Ti64 (Wielewski et al., 2015)

Carbide-free bainitic steel (Hell, 2011)

Characterized by grain subdivisions \rightarrow "non-normal" tessellations

Principle: replicating material's processing (example of bainitic steel)

- Scale 1: grain-growth statistics, random orientations
- Scale 2, in each cell:
 - Morphology: seeds on GBs + Voronoi tessellation
 - Orientations: KS, NW relationships, ...
- Scale 3, in each cell: lamellae

Before Meshing: Flattening

Generation of Multiscale Polycrystals: Applications (Neper -T)

Deformation of Ti64 (Kasemer et al, 2017)

(Left) Sedimentary rocks, (right) intra-grain cracking path (Ghazvinian et al, 2014)

Finite-Element Simulation (FEPX)

Principle

Specifics

- Finite strain formulation
- Elasto-viscoplastic behavior

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \left(\frac{|\tau^{\alpha}|}{g^{\alpha}}\right)^{1/m} \operatorname{sgn}(\tau^{\alpha})$$

- Different hardening models (isotropic, anisotropic, cyclic)
- $\cdot\,$ Formulated in displacement velocities
- \cdot Multiphase (cubic, hexagonal, tetragonal)
- Simple boundary conditions (no friction or changing contact conditions)

10

• Parallelized with Open MPI, dependency-free

Deformation movie

Next talk!

Simulation / Post-processing (Neper -S)

Goal: facilitate / standardize data management and post-processing

Post-processing Operations

• Computation of mesh results:

-reselset vol,x,y,z

- Definition of new (simulation) results:
 -reselt myvar:2*stress33
- Grain averaging: -reselset stress
- Sample averaging: -resmesh stress
- Definition of ROIs or *entities*:
 - -entity top:z>0.5 -restop stress ...
- Result management

• ...

Has a simple and browsable structure Can be loaded all at once in Neper -V for visualization Can be used for

Can be used for experimental results

Visualization (Neper -V)

Top-quality Images or VTK for Interactive Visualization

3D images produced by ray-tracing (POV-Ray) with full control (camera, light, projection, etc.)

Advanced visualizations of tessellations and meshes

EBSD maps, etc.

Orientation field and cell field (matrix / nuclei)

Simulation Results in Real Space...

Pole Figure Space...

Orientation Space...

Orientation distribution function (-)

The Neper/FEPX Project

Application to a 4D Experiment/Simulation Study

Experiment

In situ analysis at ESRF / ID11 (Renversade and Quey, 40th Risø Symposium)

Importing the Experimental Data into Neper

Writing the DCT Volume (.dat) at Neper's Format (.tesr)
volume.tesr:

```
***tesr
 **format
   2.1
 **general
   3
   600 600 1000
   0.0014 0.0014 0.0014
 **cell
   1987
  *crysym
   cubic
  *ori
   rodrigues:active
   0.021351228152
                     0.271788287376
                                       0.157120856687
   [...]
 **data
   binary16
  *file volume.dat
***end
```

$\$ neper -T -loadtesr volume.tesr $\$

-transform "scale(0.25,0.25,0.25), autocrop, renumber"

- $\hookrightarrow \mathsf{Generate} \text{ a standalone } \texttt{tesr} \text{ file}$
- \hookrightarrow Apply various transformations

\$ neper -V volume.tesr -datacellcol ori -print img

Simple input file, various transformations, direct visualization

Processing the Experimental Data

Initializing the Simulation Directory

\$ neper -T -loadtesr volume.tesr -for sim

volume.sim/

Computing Results

```
$ neper -S volume.sim -step 5 \
    -cellres "ff3dxrd:file(ff3dxrd),ori:file(ori),diameq"
```

ff3dxrd:

ori.step0, ori.step1, ...

Polycrystal Meshing

\$ neper -M volume.tess -order 2 -rcl 0.5 -part 100

Simulation file, simulation.config

Running FEPX

print stress

Simulation Post-Processing: Grain Averaging, etc.

Visualization

Experiment

Simulation

\$ neper	-V volume-fem.sim	\setminus
	-step 5	\mathbf{n}
	-datanodecoo coo	\mathbf{n}
	-showelset "ff3dxrd"	\mathbf{n}
	-dataelsetcol ori	\mathbf{n}
	-print fem	\mathbf{n}
	-space pf	\mathbf{N}
	-print fem-pf	

Custom visualization, consistent across possible inputs (experiment and simulation, 2D or 3D), interactive using VTK files

The Neper/FEPX Project

- Convergence of 2 established codes, product of 40 collective years of development and use
- Goal: Full range of features for polycrystal plasticity studies, especially in the experiment / simulation context
 - $\rightarrow\,$ Generation, meshing, simulation, ...
 - \rightarrow ... post-processing, visualization, data management (+ Jupyter notebooks)
 - \rightarrow Many features are implemented, others can be added
- Open-science approach: open-source code, open resources, ...
- Growing community of users (discussion forums)