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Scientific Context: Polycrystal Plasticity Studies by Experiment and Simulation, involving Grain Tracking

Microtexture tracking (Quey, Dawson and Driver, 2010-2015)
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The Neper/FEPX Framework

Intra-grain Orientation Distributions in Deformed Aluminium (Acta Materialia, 2024)



The Neper/FEPX Framework



Neper/FEPX History

90s-2000s

late 2000s

2010-20M

2011-2019

2020-2023

Microstructure modelling,
phase transformation

Transformation-induced
plasticity (Barbe et al, 2008)
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HR random polycrystals,
robust meshing

Deformation bands
(Barbe et al, 2008)

—— FEPX ——

CPFEM, parallel
implementation

Sheet forming (Beau-
doin, Dawson et al, 1995)

HR (regular) polycrystals

Lattice strains (Wong et al,
2009, vs Bernier @ CHESS)

Large deformations,
remeshing,
Neper & FEPX coupling

Microtextures (Quey
et al, 2010-15)

Experimental or
complex microstructures

Grain rotations
(Renversade and Quey, 2024)

Deformation of Ti64
(Kasemer et al, 2017)
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Complete workflow
(experiment / simulation)

Neper/FEPX project
(Quey and Kasemer, 2022)

Polycrystal properties

Tessellation

Increased compatibility
Post-processing
(including experiment)

Deformation Simulation
(FEPX)

Macroscopic properties

Localization, statistical
(grain populations)

Localization, statistical,
intragranular

Localization, individual

grains, intragranular

Workflow standardization
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Neper/FEPX Overview

https://neper.info

# » Neper: Polycrystal Generation and Meshing View page source

Neper: Polycrystal Generation and Meshing

Neper is a free / open source software package for polycrystal generation and meshing. It can be
used to generate polycrystals with a wide variety of morphological properties, from very simple
morphologies (simple tessellations, grain-growth microstructures, ..) to complex, mumtiphase or
multiscale microstructures that involve grain subdivisions. The resulting tessellations can be meshed
into high-quality meshes suitable for finite-element simulations

See also Neper's companion program, FEPX, a finite element software package for polycrystal
plasticity. FEPX acts as a simulation tool for Neper.

Neper is developed by Romain Quey at CNRS and Mines Saint-Etienne.

Next©

Wide array of resources

Hosted on GitHub (source code, forum, etc.) Run on personal computer (Neper) / cluster (FEPX)

https://fepx.info

# » FEPX: Finite Element Polycrystal Plasticity View page source

FEPX: Finite Element Polycrystal Plasticity

FEPX is a finite element software package for polycrystal plasticity. It can model both the global
and local mechanical behaviors of large polycrystalline aggregates with complex microstructures via
a scalable parallel framework.

See also FEPX's companion program, Neper, a polycrystal generation and meshing tool. Neper

acts as the primary pre- and post-processor for FEPX.

FEPX is currently maintained and developed by the Advanced Computational Materials Engineering
Laboratory ACME Lab at The University of Alabama

Next©

Easy to install


https://neper.info
https://fepx.info

Neper/FEPX Workflow

Simulation (from Experiment)

Polycrystal properties

Tessellation
(Neper 1) Neper modules / FEPX to run successively

Tessellation

(.tess)

|

Meshing
(Neper -M)

\ tess: Tessellation/polycrystal file (full info.)

Material behavior and loading Mesh

Standalone “concept” file formats

(.config) (.msh)

1 msh: Mesh file (full info.)

Deformation Simulation

(FEPX) config: Material + loading file

‘ sim: Simulation database

Simulation archive

Post-Processing
(Neper -S)

Simulation archive
(.sim)

}

— fits different needs

Visualization
(Neper -V)
Simulation inputs and results Images or volumes
sim) (.png)  (.vtk)



Neper/FEPX Workflow
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Polycrystalline Microstructures

Single-Scale Microstructures Multiscale Microstructures

A,
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B,

(Rowenhorst et al., 2010) Carbide-free bainitic steel (Hell, 2011) Lamellar Ti64 & parent 8 grains (Wielewski et al., 2015)
~» Single-scale and multiscale have different topologies

Different Types of Experimental Inputs
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Focus on Laguerre Tessellations (also “Weighted Voronoi” or “Radical”)

Note: Vectorial Geometry
Definition (E. Laguerre, 1834-1886)
- Domain of space, D
- N seeds, S;, of positions x; and weights w;
- CGi={P(x) e D|d(P, S;) < d(P, Sj) Vj # i}
d(P,S))=de(P,S)" —w (“Power distance”)

In general, the larger the weight, the bigger the cell.

The weight is equivalent to a sphere radius: w; = ri%.

Common Use: Dense Sphere Packing However, Laguerre Tessellations are General (Lautensack, 2007)

Every normal tessellation of R? is a Laguerre tessellation

4

Laguerre tessellations

general parameterization of (convex-grain) polycrystals

(N grains require 4 N uncorrelated parameters)

ST

(Chen and Zhao, 2022) for a powder 9



Optimization of Laguerre Tessellations (Quey and Renversade, 2018)

Optimization Problem

- Variables: for each seed, 3 coordinates + 1 weight (4xN)
- Objective function: application dependent (grain size distributions, grain centroids, ...)

- Nature: Non-linear, unknown gradient, large-scale, local

Resolution

- Optimization algorithm from the literature (Subplex, from NLopt) General optimization
J

- T lati lgorithm: cell-based, with updat A A ‘
esseflation atgorithm: ceti-based, with Update Retained Laguerre tessellation generality

Red seed modified

Any (convex-grain) polycrystal can be generated given proper definition of the objective function 10




Application #1: Grain-growth Microstructures (Quey and Renversade, 2018)

Microstructure Properties Initial Solution: Voronoi Tessellation Microstructure
ST 71 1 1 " 1 Xi. random
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Application #2: (Far-field) 3D X-Ray Diffraction Microscopy (Poulsen et al, 2003)

(Quey and Renversade, 2018)

Microstructure Properties Initial Solution

X; = grain centroid
w; = (grain radius)?

Objective Function
target
Urrem

(

di’+d>? =dg Xi«,xf>2+<"i*r;)2

O=—r0 Y (d +dY)

1
DCT data — ff-3DXRD data N (d) &
1
Grain centroids and volumes — spheres

(courtesy H. Proudhon)

Microstructure

Initial solution: Final solution:
O = 0.0149 O = 0.00263

12



Application #3: Diffraction Contrast Tomography (Ludwig et al, 2008) (Quey and Renversade, 2018)

Microstructure Properties Initial Solution Microstructure

X; = grain centroid
w; = (grain radius)?

Objective Function

e

polycrystal tessellation distance
DCT polycrystal N Final solution:
(courtesy H. Proudhon) O — 2 Z Z de (v, Ci)2 5.6% difference
nV <d> =1 VkEGb

Particularly interesting for 1/ convex grains (or approximation acceptable), 2/ large polycrystals and 3/ noisy data .



Multiscale Microstructures using Nested (Laguerre) Tessellations

Principle: Replicating Material's Processing (Example of Bainitic Steel) scale 1
- Scale 1: grain-growth statistics, random el gz elX
orientations scale 2
- Scale 2, in each cell: well T well s S

- Morphology: seeds on GBs + Voronoi
tessellation

Scale 3 h

- Orientations: KS, NW relationships, ...

- Scale 3, in each cell: lamellae

Before Meshing: Flattening

scale 3 e

cell 1 cell 2 cell M
scale 2 FTy ﬁ S
cell 1 cell 2 cell N
scale 1 FT,

Flattening of a 2-scale tessellation
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Examples of Multiscale Tessellations
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Deformation of Ti64 (Kasemer et al, 2017)
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(Left) Sedimentary rocks, (right) intra-grain cracking path (Ghazvinian et al, 2014)

Subgrain structures (Kutsal, Poulsen et al, 2022), ID03
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3 Leaps Forwa

(Quey, Barbe and Dawson, CMAME, 2011)

Multimeshing: N ~ 1000 grains — N = 100,000 grains
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Mesher 1 (Delaunay), Mesher 2 (Frontal), Multimeshing (60% mesher 1, 40% mesher 2)
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remeshing



Deformation Simulation using FEPX (Dawson and Boyce, 2015) (Quey and Kasemer, 2022)

Principle Specifics

- Elasto-viscoplastic behavior

P A
. ¥ =0 (a> sgn(r®)
Crystal elasticity g

" + Different hardening models (isotropic, anisotropic,
precipitation-based, cyclic, etc.)

me]

— 100

= - Multiphase (cubic, hexagonal, tetragonal)
Polycrystal Single Finite sy oot oo .
Y Corid  Eemen Madks G e - General or RVE-type loadings
Balance Laws Constitutive Model A Y I . . . . .
. IZAE “ . !@ i i |!j! - - Nonlinear kinematics for large strains and large rotations
o o - State variable evolution for lattice orientation and slip strengths

asal
m={1071} m={0001} m={1070}
8=<1123> s=<1120> 8=<1120>

Anisotropic plasticity - Standard and advanced outputs
€=1.00% €=4.50% - n

Effective Plastic
Deformation Rate

o
I i 0.02
0.00

sigma_12[MPs]

Can simulate deformation of polycrystals with 1000+ grains discretized 10° nodes/elements to small or large plastic strain routinely



Intra-grain Orientation Distributions in Deformed Aluminium (Acta Materialia, 2024)



Experiment

(Renversade and Quey, 2024)

Sample and Analysis at ESRF / ID11

Z direction
equal-area proj,

Gauge section

(111

[110]

Initial texture

{200} {220} (311} {222}

Example spots of a grain at e = 2%

- Aluminium alloy (Al0.3Mn), d = 200 pm
- Uniaxial tension to e = 1.0, 1.5, 2.0, 2.5 and 4.5%

- DCT at initial state, ~2000 grains

~ Initial microstructure

- 3DXRD at deformed states, ~700 grains

~» Spot shapes (azimuthal projection)

Acknowledgements to W. Ludwig (DCT), J. Wright and A. Borbély (3DXRD) 18



ODF Determination from 3DXRD Spots (Renversade and Quey, 2024)

Reduced ODF

Forward Modelling

) (Hen = Teen)
)]
2
J sen ~ o)
rfe
=1

( exp — xp
IyJ

Z

=)
O
Density

exp — exp
1

R=—
N

k see also (Hansen et al, 20999)



ODF Determination from 3DXRD Spots: Example of a Grain

(Renversade and Quey, 2024)

Spots (Azimuthal Projection)
{200} {220} 311y 222

m

T

[0}

Experiment

End Result = Orientation Distribution

Z

61 = 0.56° 6, = 0.25°

tri-variate normal distribution

1.0
0.8
0.6
0.4
0.2
0.0
0.27
vi=| 0.33
~0.90
65 = 0.15°

{200} {220} (311} {222}

1.0
0.8
0.6
0.4

0.2

'll_w‘

0.0

Forward Modelling

Metrics

- Angular extent (“GOS"):
8= 1/2/n (0P + 6P +05P)F , p = 1.58
- Anisotropy factor: g = 61/v/016, 65 (> 1)

- Preferential disorientation axis: vq

20



Finite Element Simulation (Renversade and Quey, 2024)

Crystal Behaviour

- {111} (110) systems

) T m
- “YY =0 || ssn(r)
% _qan N
with g% = ho (gsg) 4
g gs — go
and 5 =>4
(3

40 =1, m = 0.03, hg = 47 MPa, n’ = 2.6,
Jgo = 6 MPa, gs = 455 MPa

Results (Glez and Driver, 2001) (Barton and Dawson, 2001)
1 (0% 107
Z max2.3° Z S:NZ(W ®W)
(e}
Y
M 0 O
S=10 X O
OO

AV, V)

in (V1, Vo, V3) with A >N > /\3

— 6, 6, and vy
21



Angular Extent and Anisotropy (Renversade and Quey, 2024)

Angular Extent (9)
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Preferential Disorientation Axis (v;) (Renversade and Quey, 2024)

£=1.0%

e=15%

——e=1.0%

I e =1.5%|1
5 —— £ =2.0%]
L —— e =2.5%|]

£=25%

Normalized frequency [-]
© = N W A LU ®

0 10 20 30 40 50 60 70 80 90

acos (v - v§im) [degrees]

€= 4.5% o = 45% “ Grain-by-grain comparison
25 25
2.0 . 2.0
|5§ 15§
1.0 1.0
0.5 0.5
0.0 0.0
Experiment Simulation
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Preferential Disorientation Axis (v;) — Correlation to the Grain Orientation (e = & (Renversade and Quey, 2024)

Experiment Simulation

2%



What Next?

(Renversade and Quey, 2024)

Summary of the Results

Angular extent (f):  regular increase, simulation goes faster ~ good correlation
Anisotropy factor (6,):  similar, self-similar distributions no correlation

Preferential disorientation axis (v4):  similar RD-TD distribution good correlation

~» First-order agreement between experiment and simulation (cross-validation)

To Go Further

- Option #1: Improve the agreement between experiment and simulation

- Experiment: microstructure reconstruction, reduced ODF reconstruction, ...

- Simulation: microstructure meshing, material model (slip law, slip parameters, interaction matrix, ...) ...

- Option #2: Learn from the current level of agreement (especially on v4)

Simulation particularly useful (v4 and &, 4%, 72, etc.)

- How does the preferential disorientation axis (v4) relate to deformation (slip)?

- What controls the preferential disorientation axis (v4)?

25
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(Quey, Driver and Dawson, 2015) (Renversade and Quey, 2024)

Second-order, Stress-Fluctuation Model for Lattice Rotation

F=V*R*FP V¥ =1+¢&° T=C:¢e T =det(l+&% o
I:p:Ap Ap—1 I:p:ﬁp+wp bp:Z"yo‘lsa V/Vp:R* R;{T%’Zf‘” Ou
(0% (o’
oo s T |m o e o Qs_ga . - .o
=40 |—| sgn(r%) ¥ =P 7 g = ho 4, where § =) |4
gs — Jo p

(67

or* 94 D4 ' e
: v Yo (T
- Yl o [e% th = — o

day za:ara (@ p%) W Gra mge | g« )

orx

— v
o us (2)
can be (i) evaluated for different (nominal) stresses and (ii) associated to different stress distributions
26
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Influence of the Stress (Distribution) on the Preferential Disorientation Axis (Renversade and Quey, 2024)

directions
equal-area proj.

Experiment Simulation (FEM) Iso-strain stress FEM stress Iso-strain stress

+ isotropic distribution + isotropic distribution + FEM distribution

Preferential disorientation axis sensitive to average grain stress, not stress distribution o



Conclusions

Neper/FEPX

- Convergence between two “established” codes

- Complete workflow, especially for experiment-simulation comparisons (.tesr, .sim, etc.)

Application to Intra-Grain Orientation Distributions

- Various approximations made along the way, in both experiment and simulation...
- Ist-order agreement between experiment and simulation (validation)
- Simulation results (stresses, slip rates, strengths, etc.) used to go further

- Preferential disorientation axis sensitive to stress, not so much to stress distribution

Example of how experiment and simulation can be used

to improve our understanding of material deformation

28
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